Hybrid RRT: Motion Planning for Hybrid Dynamical Systems

Nan Wang and Ricardo Sanfelice

Department of Computer Engineering Hybrid System Laboratory University of California, Santa Cruz, USA

June 3, 2022

University of California, Santa Cruz - 1/13

1. Motivation: robotics motion planning

1. Motivation: robots with hybrid dynamics

The motion planning problem for hybrid systems is to find a trajectory of states and inputs that starts from the initial state (set), ends within the final state (set), and satisfies both continuous and discrete dynamics and **safety** criterion.

University of California, Santa Cruz - 3/13

1. Motivation

2. Preliminaries on Hybrid System Modeling

- 3. Problem Formulation
- 4. HyRRT Algorithm
 - Algorithm description
 - Probabilistic completeness
 - Simulation results

A hybrid system ${\mathcal H}$ with inputs is modeled by a system of differential and difference equations as

$$\mathcal{H}: \begin{cases} \dot{x} = f(x, u) & (x, u) \in C\\ x^+ = g(x, u) & (x, u) \in D \end{cases}$$

$$(1)$$

where $x \in \mathbb{R}^n$ is state, $u \in \mathbb{R}^m$ is input,

- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is the flow map;
- $C \subset \mathbb{R}^n \times \mathbb{R}^m$ is the flow set;

- $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is the jump map;
- $D \subset \mathbb{R}^n \times \mathbb{R}^m$ is the jump set.

A motivating example: A classic example of hybrid system is bouncing ball system. Consider a ball bouncing on a fixed horizontal surface. The surface is capable of affecting the velocity of the ball after the impact through control actions.

A motivating example: A classic example of hybrid system is bouncing ball system. Consider a ball bouncing on a fixed horizontal surface. The surface is capable of affecting the velocity of the ball after the impact through control actions.

•
$$x_1 = \text{height}, x_2 = \text{velocity}$$

► $\gamma =$ the gravity constant, $\lambda =$ coefficient of restitution $\int \dot{x} = \begin{bmatrix} x_2 \\ -\gamma \end{bmatrix} =: f(x, u) \qquad \forall (x, u) \in C$

$$\begin{cases} x^{+} = \begin{bmatrix} x_{1} \\ -\lambda x_{2} + u \end{bmatrix} =: g(x, u) \quad \forall (x, u) \in D \end{cases}$$

where

$$C := \{ (x, u) \in \mathbb{R}^2 \times \mathbb{R} : x_1 \ge 0 \}$$
$$D := \{ (x, u) \in \mathbb{R}^2 \times \mathbb{R} : x_1 = 0, x_2 \le 0, u \ge 0 \}.$$

(2)

Hybrid time domain: The solutions and inputs to a hybrid system ${\cal H}$ are parameterized by (t,j) where

- $t \in \mathbb{R}_{\geq 0}$ denotes the normal time variable
- $j \in \mathbb{N}$ denotes the number of jumps.

Hybrid time domains:

dom $\psi := ([0, t_1]) \times \{0\} \cup ([t_1, t_2]) \times \{1\} \cup \cdots \cup ([t_j, t_{j+1}]) \times \{j\} \cup \cdots$

for some finite sequence of times $0 = t_0 \leq t_1 \leq t_2 \leq \ldots \leq t_{J+1}$.

Definition 2.1 (Solution pair to a hybrid system (altin2019hybrid))

Given a pair of functions $\phi : \operatorname{dom} \phi \to \mathbb{R}^n$ and $u : \operatorname{dom} u \to \mathbb{R}^m$ defined on hybrid time domains, (ϕ, u) is a solution pair to hybrid system $\mathcal{H} = (C, f, D, g)$ if:

1. During flows,

 $(\phi(t,j),u(t,j)) \in C \quad \dot{\phi}(t,j) = f(\phi(t,j),u(t,j))$

Definition 2.1 (Solution pair to a hybrid system (altin2019hybrid))

Given a pair of functions $\phi : \operatorname{dom} \phi \to \mathbb{R}^n$ and $u : \operatorname{dom} u \to \mathbb{R}^m$ defined on hybrid time domains, (ϕ, u) is a solution pair to hybrid system $\mathcal{H} = (C, f, D, g)$ if:

1. During flows,

 $(\phi(t,j),u(t,j))\in C \quad \dot{\phi}(t,j)=f(\phi(t,j),u(t,j))$

2. At jumps,

 $(\phi(t,j),u(t,j))\in {\color{black} D} \quad \phi(t,j+1)={\color{black} g}(\phi(t,j),u(t,j)).$

Problem 1 (Motion planning problem for hybrid systems) *Given*

1. a hybrid system $\mathcal{H} = (C, f, D, g)$ with input $u \in \mathbb{R}^m$, state $x \in \mathbb{R}^n$;

find a pair $(\phi,u):\mathrm{dom}(\phi,u)\to\mathbb{R}^n\times\mathbb{R}^m$, namely, a motion plan, such that:

1. (ϕ, u) is a solution pair to \mathcal{H} ;

Problem 1 (Motion planning problem for hybrid systems) *Given*

- 1. a hybrid system $\mathcal{H} = (C, f, D, g)$ with input $u \in \mathbb{R}^m$, state $x \in \mathbb{R}^n$;
- 2. initial state set $X_0 \subset \mathbb{R}^n$;

find a pair $(\phi,u):\mathrm{dom}(\phi,u)\to\mathbb{R}^n\times\mathbb{R}^m$, namely, a motion plan, such that:

1. (ϕ, u) is a solution pair to \mathcal{H} ;

2. $\phi(0,0) \in X_0$;

Problem 1 (Motion planning problem for hybrid systems) *Given*

- 1. a hybrid system $\mathcal{H} = (C, f, D, g)$ with input $u \in \mathbb{R}^m$, state $x \in \mathbb{R}^n$;
- 2. initial state set $X_0 \subset \mathbb{R}^n$;
- **3**. final state set $X_f \subset \mathbb{R}^n$;

find a pair $(\phi,u):\mathrm{dom}(\phi,u)\to\mathbb{R}^n\times\mathbb{R}^m$, namely, a motion plan, such that:

- **1**. (ϕ, u) is a solution pair to \mathcal{H} ;
- **2**. $\phi(0,0) \in X_0$;
- 3. there exists $(T, J) \in dom(\phi, u)$ such that $\phi(T, J) \in X_f$;

Problem 1 (Motion planning problem for hybrid systems) *Given*

- 1. a hybrid system $\mathcal{H} = (C, f, D, g)$ with input $u \in \mathbb{R}^m$, state $x \in \mathbb{R}^n$;
- 2. initial state set $X_0 \subset \mathbb{R}^n$;
- **3**. final state set $X_f \subset \mathbb{R}^n$;
- 4. unsafe set $\mathbf{X}_{\mathbf{u}} \subset \mathbb{R}^n \times \mathbb{R}^m$;

find a pair $(\phi,u):\mathrm{dom}(\phi,u)\to\mathbb{R}^n\times\mathbb{R}^m$, namely, a motion plan, such that:

- **1**. (ϕ, u) is a solution pair to \mathcal{H} ;
- **2**. $\phi(0,0) \in X_0$;
- 3. there exists $(T, J) \in dom(\phi, u)$ such that $\phi(T, J) \in X_f$;
- $\textbf{4.} \ (\phi(t,j),u(t,j)) \notin \mathbf{X_u} \text{ for each } (t,j) \in \mathrm{dom}(\phi,u) \text{, } t+j \leq T+J.$

4.1 Algorithm description

Algorithm 1 HyRRT algorithm

```
Input: X_0, X_f, X_u, \mathcal{H} = (C, f, D, g), \mathcal{U} = (\mathcal{U}_C, \mathcal{U}_D), p_n \in (0, 1)
 1: \mathcal{T}.init(X_0)
 2: for i = 1 to k do
 3:
          randomly select a real number n from [0, 1]
          if n < p_n then
 4:
 5:
               x_{rand} \leftarrow random\_state(\overline{C'})
               extended \leftarrow extend(\mathcal{T}, x_{rand}, \mathcal{U}, \mathcal{H}, X_u, flow)
 6:
 7:
          else
 8:
               x_{rand} \leftarrow random_{state}(D')
 9:
               extended \leftarrow extend(\mathcal{T}, x_{rand}, \mathcal{U}, \mathcal{H}, X_u, jump)
10:
           end if
11:
           if extended == 1&check_solution(\mathcal{T}, X_0, X_f, C, \psi_{sol}) == 1 then
12:
                return \psi_{sol}
13:
           end if
14: end for
```

4.1 Algorithm description

The propagation results:

4.1 Algorithm description

The propagation results:

 x_{cur}

 x_{new}

4.2 Probabilistic completeness

Definition 4.1

(Probabilistic completeness (kleinbort2018probabilistic)) A sampling-based algorithm is said to be probabilistically complete if the probability of failing to find a solution is converging to 0, as the number of samples approaches to infinity.

4.2 Probabilistic completeness

Definition 4.1

(Probabilistic completeness (kleinbort2018probabilistic)) A sampling-based algorithm is said to be probabilistically complete if the probability of failing to find a solution is converging to 0, as the number of samples approaches to infinity.

Theorem 1

The proposed HyRRT is probabilistically complete for any given motion planning problem for hybrid systems formulated as in Problem 1.

4.3 Simulation results: Algorithm 1 leads to a HyRRT software tool¹ to solve the motion planning problems for hybrid systems. The simulation is implemented in MATLAB software and processed by a 2.2 GHz Intel Core i7 processor. The simulation takes 0.34 seconds to finish.

¹Code at https://github.com/HybridSystemsLab/hybridRRT.

4.3 Simulation results: The simulation is implemented in MATLAB software and processed by a 3.5 GHz Intel Core i5 processor. The simulation takes 57.6 seconds to finish.

4.3 Simulation results: The simulation is implemented in MATLAB software and processed by a 3.5 GHz Intel Core i5 processor. The simulation takes 57.6 seconds to finish.

Table: Computation Costs of HyRRT and FBP in the Biped Example .

	Time Consumption (seconds)	Vertices
HyRRT	57.6	2357
FBP	1608.2	3796

Acknowledgement

This research has been partially supported by the National Science Foundation under Grant no. ECS-1710621, Grant no. CNS-1544396, and Grant no. CNS-2039054, by the Air Force Office of Scientific Research under Grant no. FA9550-19-1-0053, Grant no. FA9550-19-1-0169, and Grant no. FA9550-20-1-0238, and by the Army Research Office under Grant no. W911NF-20-1-0253. Thank you for your attention. Any questions?