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Hybrid dynamical systems have state variables that evolve continuously 
and, at times, exhibit jumps. Standard motion planning algorithms are 
solely for purely continuous-time [1][2][3] or purely discrete-time [4] 
models and, hence, do not apply to hybrid systems. One of the main 
challenges is that the jump times are not known in advance and need to 
be determined by the planner. Considering the incompatibility between 
standard motion planning methods and hybrid systems, the goal of this 
research is to develop a general motion planning algorithm for hybrid 
systems. The objective is for the planner to produce a motion plan 
for states and inputs connecting initial and target state sets, while 
satisfying given static and dynamic constraints. This poster outlines 
results to date, including bouncing ball systems and actuated point mass 
systems. The effectiveness of the proposed algorithm is illustrated by two 
examples.

I. Preliminaries on Hybrid Systems
Hybrid System Model
A hybrid system ℋ can be written as 

ℋ: #
%̇ = ' %, ) (%, )) ∈ -

%. = / %, ) (%, )) ∈ 0
where -, ', 0 and / represent the flow set, the flow map, the jump set, 
and the jump map, respectively. The state and input of this system are 
denoted by % and ), respectively.

II. Problem Statement
Given hybrid system ℋ with input ) ∈ ℝ2, input set 
3 ⊂ ℝ2, state % ∈ ℝ5, unsafe set 67 ⊆ ℝ5, final 
state set 69 ⊆ ℝ5 and initial state set 6: ⊆ ℝ5, for 
each %: ∈ 6:, find %, ) : dom %, ) ⟼ ℝ5×ℝ2
such that the following hold: 
Ø % 0, 0 = %:. 
Ø (%, )) is a solution to ℋ. 
Ø ∃ B, C ∈ dom %, ) : %(B, C) ∈ 69. 
Ø %(D, E) ∉ 67 for each D, E ∈ dom(%, ))

IV. A General Motion Planning Algorithm for Hybrid Systems

III. Examples 

Actuated Point Mass System [6]

State with respect to time

Hybrid Time Domain
Following [5], besides the usual time variable D ∈ GH:, we consider the 
number of jumps, E ∈ I ≔ {0, 1, 2, … }, as an independent variable. 
Thus, hybrid time is parameterized by (D, E). The domain of a solution 
to ℋ is given by a hybrid time domain. A hybrid time domain defined 
as a subset P of GH: × I that, for each (B, C) ∈ P,P ∩ ([0, B]×
{0, 1,… , C}) can be written as ∪UV:

WXY ( DU, DU.Y , E) for some finite 
sequence of times 0 = D: ≤ DY ≤ D[≤ ⋯ ≤ DW.

Backward-in-time Hybrid System
Given the forward-in-time hybrid system ℋ, the 
backward-in-time hybrid system ℋ]^ is given by: 

ℋ]^: _
%̇ = −' %, ) (%, )) ∈ -

%. = /]^ %, ) (%, )) ∈ 0]^

where - and ' are the flow set and the flow map in the 
ℋ, and /]^ and 0]^ are the backward versions of jump 
map / and jump set 0. 

Simulation setup: 
6: = −5, 30 ,
69 = {(−5, 10)},
U =	[10,	20],
ef = 0.8, ij = 1, 
kj = 1, %̂[ = 2

Robotic manipulator [9]

Abstract

Self-driving vehicles 
(Samsung)

Walking robots 
(UMich)

Robotics manipulator (da Vinci)

Solution to Hybrid System
A solution to the hybrid system ℋ is given by a hybrid arc % satisfying 
the dynamics of ℋ. A hybrid arc % is a function on a hybrid time domain 
that, for each E ∈ I, D ↦ %(D, E) is absolutely continuous on the interval 
n ≔ {D: (D, E) ∈ dom %)}.

Motion Planning Methodology 
Human-like robot [8]

Simulation setup: 
6: = {(10, 0)} ,
69 = {(100, 0)}, 
U =	[0,	10],
o = 9.81, e = 0.8.

State with respect to time

Hybrid time domain

ℋ:
%̇ =

%[
−o %Y ≥ 0

%. =
%Y

−e%[ + )
%Y = 0,
%[ ≤ 0

where % ≔
%Y
%[ ∈ ℝ[, %Y is the height, %[ is the velocity

of the ball, ) ∈ 3 is the input, o is the gravity constant, 
and e ∈ (0,1).

Bouncing Ball System [5]

ℋ:
%̇ =

%[
) − 'j(%)

st %Y ≤ 0
%[ ≤ %̂[

%. =
%Y

−ef%[
%Y ≥ 0
%[ ≥ %̂[

where % ≔
%Y
%[ ∈ ℝ[, %Y is the position, 

%[ is the velocity of the point mass, )j ∈
3 denotes the steering input, ef ∈ [0, 1]
represents the uncertain restitution 
coefficient, and 'j is the contact force [7].

Bouncing ball system

Actuated point mass system

Ø Forward propagation of hybrid motion from initial set and 
backward propagation from target sets.

Ø Iteratively propagate the states forward and backward, 
during flow and jump, until overlap is found.  If none is 
found, report infeasibility of planning.

Ø Compute motion plan by connecting intermediate 
forward and backward plans

To implement the propagations:
Ø For each initial state %: ∈ 6: ⊂ - and all the possible 

input ) ∈ 3, compute Du and %(Du, 0)such that D ↦
%(D, 0) is a solution to ℋ. At D = Du, %(Du, 0) ∈ 0. 
Compute the set v of all possible % Du, 0 , v ⊂ 0.

Ø For each initial state %: ∈ 6: ⊂ 0 and all the possible 
input ) ∈ 3, compute Ew and %(0, Ew)such that E ↦ %(0, E)
is a solution to ℋ. At E = Ew, %(0, Ew) ∈ -. Compute the 
set x of all possible % 0, Ew , x ⊂ -.

final state set

initial state

Solution found

https://en.wikipedia.org/wiki/Humanoid_robot


Thank you!

Questions?


