Nan Wang

1156 High Street
o Santa Cruz, CA 95064 o (725) 300 - 9136 Email: nanwang@ucsc.edu
o Website: www.warnerion.com

ACADEMIC EXPERIENCE

University of California, Santa Cruz, Santa Cruz CASep 2018—2023 (Expected)Ph.D. in Computer Sci. and Eng., GPA: 3.85/4.0, Emphasis: motion planning, hybrid systems, MPC.Tongji University, Shanghai ChinaM.E. in Control Sci. and Eng., GPA: 4.33/5.0, Emphasis: trajectory planning, autonomous vehicles.East China Univ. of Sci. and Tech., Shanghai ChinaB.E. in Automation, GPA: 3.50/4.0, Emphasis: path planning, tracking control.

SELECTED PROJECTS AND RESEARCH

Hybrid Systems Lab (UCSC, PI: Ricardo Sanfelice)	Graduate Student Researcher
• MPC-based Tracking Control for Hybrid Systems	Mar 2022 - Present
 Designed a model predictive controller for hybrid systems asymptotic stability property. 	to track motion plans with proven
• Robotics Applications Projects	Sep 2021 - Present
– Implemented a tracking controller for self-driving vehicles	with global invariance property.
– Implemented a set-based planner for drones considering obsta	cles exhibiting hybrid dynamics .
• RRT Motion Planning Algorithm for Hybrid Systems	Sep 2021 - Mar 2022
 Designed an RRT-based motion planning algorithm for hydright the proven probabilistic completeness property. Implement improves the computation performance by 95.5%. 	
• Feasible Motion Planning for Hybrid Systems	Sep 2018 - Mar 2021
 Mathematically defined the motion planning problem, system tion, reversal, and concatenation operations for hybrid systems algorithm template for hybrid systems with proved com 	tems, and designed a motion plan-
Lab of Vehicle Control & Networking (Tongji, PI: Jun Wang • Autonomous Vehicle Development	g) Research Assistant Jan 2018 - Aug 2018
 Led a team of three to develop the Decision Making, Planning, autonomous vehicle platform. 	and Control Module on a full-size
– Developed a finite state machine -based decision making me	odule using Stateflow .
• Flow Field-guided Trajectory Planning for Ground Vehicles	Mar 2017 - Jul 2018
 Developed a novel trajectory planning algorithm for the unm- gates the vehicle using the fluid field information. 	anned ground vehicles which navi-
• Path Planning for Autonomous Parking Systems	Jul 2015 - Dec 2015
 Developed a geometric path planning method for autonomo- the minimal length of the feasible parking lot by 7%. 	ous parking systems that decreases

ADDITIONAL INFORMATION

Skills: MATLAB/Simulink, Python, C/C++, C#, CarMaker, CarSim, ROS, Git, HTML/CSS, IAT_EX

Teaching Assistantship: Analysis of Algorithm, Database Systems, Robot Automation, Computer Systems and C Programming.

Award: Chancellor's Fellowship. Academic Service: Technical committee member in IEEE CSS Technical Committee on Hybrid Systems

SELECTED PUBLICATIONS

- N. Wang, and R. Sanfelice, Motion Planning for Hybrid Dynamical Systems: Framework, Basic Operations, and Algorithm Template, in 26th ACM International Conference on Hybrid Systems: Computation and Control, 2023. (submitted)
- [2] N. Wang, and R. Sanfelice, Rapidly-exploring Random Tree Algorithm for Hybrid Dynamical Systems, in 61st IEEE Conference on Decision and Control, 2022. [Link]
- [3] A. Ames, N. Wang, and R. Sanfelice, A Set-based Motion Planning Algorithm for Aerial Vehicles in the Presence of Obstacles Exhibiting Hybrid Dynamics, in 6th Conference on Control Technology and Applications, 2022. [Link]
- [4] N. Wang, M. Song, J. Wang, and T. Gordon, A Flow-field Guided Method of Path Planning for Unmanned Ground Vehicles, in 56th IEEE Conference on Decision and Control, 2017, pp. 2762-2767. [Link]
- [5] M. Song, N. Wang, T. Gordon, and J. Wang, Flow-field Guided Steering Control for Rigid Autonomous Ground Vehicles in Low-speed Manoeuvring, Vehicle system dynamics, vol. 57, no. 8, pp. 1090-1107, 2019. [Link]
- [6] M. Song, N. Wang, J. Wang, and T. Gordon, A Fluid Dynamics Approach to Motion Control for Rigid Autonomous Ground Vehicles, in Dynamics of vehicles on roads and tracks: Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), 2021, p. 347. [Link]