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Summar The Modeling Framework [3] A solution pair (¢, u) of H is parametrized hybrid system H as in (1) with state x € R" and input u € R™, the initial P|055|. ﬁ ap!o |cia’2|ons ot the proposed motion planning
We bro gse fwo RRT-tvbe aloorithms to address A hvbrid svstem 7 with state x € R™ and by (t,j) € R.yXN on a hybrid time domain state set X, € R", the final state set X, c R", the unsafe set X;, ¢ R"XR™, 3 ggrll’lc. m> mc?I.u te.
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. . . . , and the dynamics of /. For each j, it | . .
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which we refer to as HySST, is guaranteed to be : - . : _ : : Problem 1 is tormulated as > = (&g, Af, &y, (C, ], U, 9)) .
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Sampling-based Motion Planning Algorithms for Hybrid Dynamical Systems Asymptotically Near-Optimal HySST Algorithm [5] Application: Motion Planning for Jumping Insect Robot
r N N | In addition to the inputs to HyRRT, HySST requires : L — -

Search Tree Model Probabilistically Complete HyRRT Algorithm [4] P Y Y quires: - A jumping insect robot can be modeled as a ball Simulation Results
: - : parameters oy > 0 and o5 > 0 to tune the optimization of bouncing on a fixed horizontal surface. The surface
The search tree is a pair 7= (V, E), where V is a set whose elements The inputs to HYRRT are X,, X7, X, 7, the input lib P : & ' HyRRT
. _ | . 0 Xf» Xy, H, put library the cost and sparsification of the vertices. is located at the origin and, through control actions G
are called vertices, denoted v, and E is a set of paired vertices whose U dU 01 hich h 8 ’ 8 ’ 20 nitalet o
N T c and Up, a parameter p, € (0,1), which tunes the Algorithm 3 HySST algorithm is capable of affecting the velocity of the ball after W sivei S
elements are called edges, denoted e. A path in T is a sequence of bability of di ith the fl : he | go b algo —+Forward propagation
vertices p = (v;, v 1) such that (v, vy.1) € E for all i € pro. ability of proceeding with the flow regime or the jump Input: Xo, X, Xu,c, H = (C, f,D,g), Uc,Up),pn € (0,1), the impact. 10+ — Motion plan
. pk B 11' 20 ) VK L ¥i+1 regime, and an upper bound K € N for the number of K'elN X. . Xi.b55and 6, S 1
L2, ., }- . . . iterations to execute. I; Tanit(Xo);
» Each vertex v € VV in the search tree 7' = (V,E) is associated Algorithm 1 IyRRT algorithm 2: Vactive < Vs Vinactive < 0, S < 0; A ¢ 10/
. . : — 3: for all vg € V do -
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vertex ’U) 2: for k= 1to K do vertices(v(), S, Vactive, Vinactive, E) = 0 S 10 15 20 25 30
. _ . . 3: randomly select a real number 7 from [0, 1]. 6: end if fo T
» Each edge e € E inthesearchtree T = (V, E) is associated with a 4 if r <p, then 7. end for 5 control HySST
solution pair to H.. 5: Trand < random state(C"). 8: for k =1 to K do = input (u) - [ Initial state
. . . 6: tend (7T, Zrand, (U, Up), H, Xu, X¢). 0: domly select | b f 0, 1{; 0 Final state
> The solution pair that the path p = (v, vy, ..., V) ) represents is S e (T @rana, (Uc, Up) ) S u Ogmp{ffhi: TR r_mm 0, 1] 1S —Sear.chttrtee
the concatenation of solution pairs associated with edges therein. s: Zyana — random_state(D’). 11: Trand < random_state(C); p S B —\otion plan
. T 9: extend(7, Zrana; (Uc,Up), H, Xu, Xa). 12: Veur¢— best_near_selection(Zrand, Vactive 0BN, Hybrid System Model for Jumping Insect Robot || g o} | * Inactive vertex|
Xo Ty, Vo U3 Vs Unew 5 10: end if Xl = £ ° Witness
\ 11: end for [3: else The dynamics of the ball while in the air is given by 10l
12: return T 14: Trand ¢+ random.state(D’); -
. 1y: Veur < best_near_selection(Zrand, Vactive, 0OBN, o L2 —_— f(:lj U) -0l
\ \\, Algorithm 2 Extend function Xq); —y ' ’ - | | | | | |
1: function EXTEND((7, z, (Uc,Up), H, Xy, X, 16: end if . : - . 0 5 10 15 20 25 30
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: (AR earch tree associated wi Up), H, X.,) : if is_a new_vertex_generated & is_vertex_locally . . . vertices and 35 inactive vertices
\ States and solution pairs states and solution pairs ) 1 b if is_a new_vertex generated = true then _the_best(Znew, COStnew, S, ds) then Is denoted by .9?2. The gravity constant |S. denoted .
) . . 4 = | 19: Unew < Vactive.add_vertex(Tnew, costnew ); by ¥. The flow is allowed when the ball is above the and takes 3.30 seconds, while
6 —Inflation of Hybrid Systems 5: Unew <= T .add-vertex(neu); 20. SIS (b e ) , L
, , , , 6: T .2dd_edge(Vewrs Unews Pnew ): ; -add.edgelVeur, Unew; Ynew); | surface. Hence, the flow set is HYRRT creates 660 vertices in
Given a hybrid system H = (C, f,D,g) and 6 > 0, the §-inflation :, return Advanced: 21: (S, Vactives Vinactive, £) <= prune_dominated. ) total and takes 18.4 g
] ) . | : ! vertices(vnew, S, Vactive, Vinactive, F); C:={(r,u) e R* xR :x; >0} otal and takes 18.4 seconds on
of the hybrid system #, denoted Hs with data (Cs, fs5, Ds, gs), is 8 endif 2 end if ’ = average
. C 9:  return Trapped; 23: end for At every impact, the velocity of the ball changes \ '
H e X f5 (.X, u) (X, u) €is 10: end function c . .. . : PR et
5 1x* = gs( 24: return 7; from pointing down to pointing up while the Other Application: Collision
=gs(e,u)  (x,u) € Dy - - ics at i Resilient Aerial Vehicle [6]
> Cs = {(x,u) € R*XR™: 3 (y,v) € C:x €y + 6B, u € v + 6B} . —— height remains the same. The dynamics at jumps e5|6|e Aerial Vehicle |o]
> fo = C e o Theorem 2. (Asymptotic Near-Optimality of HySST) of the actuated bouncing ball system is given as + Active vertex
fs =f,u) V(x,u) € Cs Theorem 1. (Probabilistic Completeness of HyRRT) : : : £ ok 5 * Witness
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g g(s = ;(’; 1;) v a0 E. p y, v X cy ,Uev } S)u(pp)c;se;herg ex:;;s a mot:zn plan (¢, u) to(fIP = o P* = (Xo, Xr, Xy, (C, f, D, g),¢). When HySST is used to xr = Azo4ul g(x,u) al o Final state
5 = ) , 5  Xe, X, (C,1,D, . When HyRRT is used to solve P = _ . .
. . (Xo Xf Xu (C f 139)) o y bability that HYRRT solve P = (Xo, X, Xy, (Cs, 5, Ds, 9s), €), the probability where and u > 0 is the input and 1 € (0, 1) is the 83
( Oy w ( 5’f5,' 0 ‘%))’, f,')pm AR , ariy that HySST finds a motion plan (¢',u") such that c(¢") < coefficient of restitution. 2
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