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Hybrid Systems

The Modeling Framework [3] 

The Solution Concept 
A solution pair (𝜙, u) of ℋ is parametrized 
by 𝑡, 𝑗 ∈ ℝ!"×ℕ on a hybrid time domain 
dom	𝜙. A solution satisfies 𝜙	(0,0) ∈ 𝐶 ∪ 𝐷 
and the dynamics of ℋ. For each 𝑗, it 
satisfies the

Ø Continuous dynamics;

�̇�	(𝑡, 𝑗) = 𝑓 𝜙 𝑡, 𝑗 , 𝑢(𝑡, 𝑗)  

for almost all 𝑡 ∈ (𝑡# , 𝑡#$%), and

𝜙 𝑡, 𝑗 , 𝑢(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ (𝑡# , 𝑡#$%).

ØDiscrete dynamics;
𝜙(𝑡#$%, 𝑗 + 1) = 𝑔 𝜙 𝑡#$%, 𝑗 , 𝑢 𝑡#$%, 𝑗

and 
𝜙 𝑡#$%, 𝑗 , 𝑢 𝑡#$%, 𝑗 ∈ 𝐷.

Overview

s

Summary
We propose two RRT-type algorithms to address 
motion planning problems for hybrid dynamical 
systems, which are characterized by their rapid 
search capabilities and are accompanied by 
theoretical guarantees:
1. Our RRT[1] -type algorithm to solve feasible 

motion planning problems for hybrid systems, 
which we refer to as HyRRT, is guaranteed to 
be probabilistically complete.

2. Our SST[2] -type algorithm to solve optimal 
motion planning problems for hybrid systems, 
which we refer to as HySST, is guaranteed to be 
asymptotically near-optimal.

3. Both algorithms possess the ability to rapidly 
search through high-dimensional problems.

Problem Statement

Sampling-based Motion Planning Algorithms for Hybrid Dynamical Systems Application: Motion Planning for Jumping Insect Robot

A hybrid system ℋ with state 𝑥 ∈ ℝ& and 
input 𝑥 ∈ 	ℝ'	: 

ℋ:  <
�̇� = 𝑓 𝑥, 𝑢 	 (𝑥, 𝑢) ∈ 𝐶 
𝑥$ = 𝑔 𝑥, 𝑢 	 (𝑥, 𝑢) ∈ 𝐷 

(1)

Ø𝐶 is the flow set
Ø 𝑓 is the flow map
Ø𝐷 is the jump set
Ø𝑔 is the jump map
Encapsulates numerous robots’ dynamics:
Ø Collision-resilient vehicles;
Ø Systems with state reset;
Ø Robots with multi-modal structure;
Ø Purely continuous/discrete-time systems.

Theorem 1. (Probabilistic Completeness of HyRRT) 
Suppose there exists a motion plan (𝜙, 𝑢) to 𝒫 =
(𝑋", 𝑋( , 𝑋), (𝐶, 𝑓, 𝐷, 𝑔)). When HyRRT is used to solve 𝒫 =
(𝑋", 𝑋( , 𝑋), (𝐶* , 𝑓*, 𝐷*, 𝑔*)), the probability that HyRRT 
fails to find a motion plan (𝜙′, 𝑢′) such that 𝜙′ is close to 𝜙 
after 𝑘 iterations is at most a𝑒+,-, where 𝑎, 𝑏 > 0.

Search Tree Model A jumping insect robot can be modeled as a ball 
bouncing on a fixed horizontal surface. The surface 
is located at the origin and, through control actions, 
is capable of affecting the velocity of the ball after 
the impact.

The search tree is a pair 𝒯= (V, E), where 𝑉 is a set whose elements 
are called vertices, denoted 𝑣, and 𝐸 is a set of paired vertices whose 
elements are called edges, denoted 𝑒. A path in 𝒯 is a sequence of 
vertices p = (𝑣%, 𝑣., … , 𝑣-) such that	(𝑣/ , 𝑣/$%) ∈ 𝐸 for all 𝑖 ∈
	{1, 2,… , 𝑘	 − 1}.
Ø Each vertex 𝑣 ∈ 𝑉	in the search tree 𝒯 =	 (𝑉, 𝐸) is associated 

with a state value of ℋ (and, for HySST, a cost value that, via 
addition, compounds the cost from the root vertex up to the 
vertex 𝑣)

Ø Each edge 𝑒 ∈ 𝐸 in the search tree 𝒯 = (𝑉, 𝐸) is associated with a 
solution pair to ℋ.

Ø The solution pair that the path p = (𝑣%, 𝑣., … , 𝑣-) represents is 
the concatenation of solution pairs associated with edges therein.

Problem 1: (Feasible motion planning problem  for hybrid systems) Given a 
hybrid system ℋ as in (1) with state 𝑥 ∈ ℝ& and input u ∈ 	ℝ', the initial 
state set 𝑋" ⊂ ℝ&, the final state set 𝑋( ⊂ ℝ&, the unsafe set 𝑋) ⊂ ℝ&×ℝ', 
find a pair (𝜙, 𝑢) such that for some 𝑇, 𝐽 ∈ dom 𝜙, 𝑢 , the following hold:

Ø𝜙 0, 0 ∈ 𝑋";

Ø𝜙 𝑇, 𝐽 ∈ 𝑋(;

Ø (𝜙, 𝑢) is a solution pair to ℋ;

Ø For any 𝑡, 𝑗 ∈ dom 𝜙, 𝑢  

such that 𝑡 + 𝑗	 ≤ 𝑇 + 𝐽,	

𝜙 𝑡, 𝑗 , 𝑢 𝑡, 𝑗 ∉ 𝑋).

Problem 1 is formulated as 𝒫 = (𝑋", 𝑋( , 𝑋), (𝐶, 𝑓, 𝐷, 𝑔))

The inputs to HyRRT are 𝑋", 𝑋( , 𝑋), 	ℋ, the input library  
𝒰0  and 𝒰1, a parameter 𝑝& ∈ (0, 1), which tunes the 
probability of proceeding with the flow regime or the jump 
regime, and an upper bound 𝐾 ∈ ℕ for the number of 
iterations to execute.

Probabilistically Complete HyRRT Algorithm [4]
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Applications
Possible applications of the proposed motion planning 
algorithms include:

Collision-resilient 
aerial vehicle

Refuel and tire 
change for AV

Walking robot Recharging for 
drones

Multimodal 
robot

Problem 2: (Optimal motion planning problem for hybrid systems) Given 
Problem 1 and a cost functional 𝑐, find a feasible motion plan (𝜙∗, 𝑢∗)	to 
Problem 1 such that (𝜙∗, 𝑢∗)	= arg min

(4,))
𝑐(𝜙). Problem 2 is formulated as 

𝒫∗ = (𝑋", 𝑋( , 𝑋), 𝐶, 𝑓, 𝐷, 𝑔 , 𝑐).

States and solution pairs 
Search tree associated with 

states and solution pairs
𝜹 −Inflation of Hybrid Systems
Given a hybrid system ℋ = (𝐶, 𝑓, 𝐷, 𝑔) and 𝛿 > 0, the  𝛿-inflation 
of the hybrid system ℋ, denoted ℋ*  with data (𝐶* , 𝑓*, 𝐷*, 𝑔*), is 

ℋ*: <
�̇� = 𝑓* 𝑥, 𝑢 	 (𝑥, 𝑢) ∈ 𝐶*
𝑥$ = 𝑔* 𝑥, 𝑢 	 (𝑥, 𝑢) ∈ 𝐷*

Ø𝐶* ≔	{ x, u ∈ ℝ&×ℝ': ∃ 𝑦, 𝑣 ∈ 𝐶: 𝑥 ∈ 𝑦 + 𝛿𝔹, 𝑢 ∈ 𝑣 + 𝛿𝔹}	
Ø 𝑓*	 ≔ 𝑓 𝑥, 𝑢 	 ∀ 𝑥, 𝑢 ∈ 𝐶*
Ø𝐷* ≔	{ x, u ∈ ℝ&×ℝ': ∃ 𝑦, 𝑣 ∈ 𝐷: 𝑥 ∈ 𝑦 + 𝛿𝔹, 𝑢 ∈ 𝑣 + 𝛿𝔹}	
Ø𝑔*	 ≔ 𝑔 𝑥, 𝑢 	 ∀ 𝑥, 𝑢 ∈ 𝐷*

Asymptotically Near-Optimal HySST Algorithm [5]
In addition to the inputs to HyRRT, HySST requires 
parameters 𝛿89 > 0 and 𝛿: > 0 to tune the optimization of 
the cost  and sparsification of the vertices.

Theorem 2. (Asymptotic Near-Optimality of HySST) 
Suppose there exists an optimal  motion plan (𝜙∗, 𝑢∗) to 
𝒫∗ = (𝑋", 𝑋( , 𝑋), 𝐶, 𝑓, 𝐷, 𝑔 , 𝑐). When HySST is used to 
solve 𝒫 = (𝑋", 𝑋( , 𝑋), (𝐶* , 𝑓*, 𝐷*, 𝑔*),	c), the probability 
that HySST finds a motion plan (𝜙′, 𝑢′) such that 𝑐 𝜙; <
1+ 𝑎𝛿 𝑐(𝜙∗) converges to 1 as the number of iterations 

approaches infinity.

where 𝑥 ≔ 𝑥%, 𝑥. ∈ ℝ.	and 𝑢 ∈ ℝ%. The height 
of the ball is denoted by 𝑥%. The velocity of the ball 
is denoted by 𝑥.. The gravity constant is denoted 
by 𝛾. The flow is allowed when the ball is above the 
surface. Hence, the flow set is

Hybrid System Model for Jumping Insect Robot
The dynamics of the ball while in the air is given by

At every impact, the velocity of the ball changes 
from pointing down to pointing up while the 
height remains the same. The dynamics at jumps 
of the actuated bouncing ball system is given as

where and 𝑢 > 0 is the input and  𝜆 ∈ (0, 1) is the 
coefficient of restitution. 
The jump is allowed when the ball is on the surface 
with negative velocity. Hence, the jump set is

Simulation Results
HyRRT

HySST

The HySST creates  154 active 
vertices and 35 inactive vertices 
and takes 3.30 seconds, while 
HyRRT creates 660 vertices in 
total and takes 18.4 seconds on 
average.

Other Application: Collision 
Resilient Aerial Vehicle [6]


