

OCTOBER 1 - 5, 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems

Overview

Summary

We propose two RRT-type algorithms to address motion planning problems for hybrid dynamical systems, which are characterized by their rapid search capabilities and are accompanied by theoretical guarantees:

- Our RRT[1] -type algorithm to solve feasible motion planning problems for hybrid systems, which we refer to as HyRRT, is guaranteed to be probabilistically complete.
- Our SST[2] -type algorithm to solve optimal motion planning problems for hybrid systems, which we refer to as HySST, is guaranteed to be asymptotically near-optimal.
- Both algorithms possess the ability to rapidly search through high-dimensional problems.

Hybrid Systems

Sampling-based Motion Planning Algorithms for Hybrid Dynamical Systems

Search Tree Model

The search tree is a pair \mathcal{T} = (V, E), where V is a set whose elements are called vertices, denoted v, and E is a set of paired vertices whose elements are called edges, denoted e. A path in \mathcal{T} is a sequence of vertices $\mathbf{p} = (v_1, v_2, \dots, v_k)$ such that $(v_i, v_{i+1}) \in E$ for all $i \in E$ $\{1, 2, \dots, k - 1\}.$

- \succ Each vertex $v \in V$ in the search tree $\mathcal{T} = (V, E)$ is associated with a state value of $\mathcal H$ (and, for HySST, a cost value that, via addition, compounds the cost from the root vertex up to the vertex v)
- \succ Each edge $e \in E$ in the search tree $\mathcal{T} = (V, E)$ is associated with a solution pair to \mathcal{H} .
- > The solution pair that the path $p = (v_1, v_2, ..., v_k)$ represents is the concatenation of solution pairs associated with edges therein.

Acknowledgement: This research has been partially supported by NSF Grants no. CNS- 2039054 and CNS-2111688, by AFOSR Grants nos. FA9550-19-1-0169, FA9550-20-1-0238, FA9550-23-1-0145, and FA9550-23-1-0313, by AFRL Grant nos. FA8651-22-1-0017 and FA8651-23-1-0004, by ARO Grant no. W911NF-20-1-0253, and by DoD Grant no. W911NF-23-1-0158.

Members of the Hybrid Systems Laboratory (HSL) at the University of California, Santa Cruz, Department of Electrical and Computer Engineering. Principal Investigator: Dr. Ricardo G. Sanfelice

HyRRT/HySST: Sampling-based Motion Planning **Algorithms for Hybrid Dynamical Systems** Nan Wang and Ricardo G. Sanfelice

 $(x, u) \in \mathcal{C}$ (1) $(x, u) \in \mathbf{D}$

A solution pair (ϕ , u) of \mathcal{H} is parametrized by $(t, j) \in \mathbb{R}_{\geq 0} \times \mathbb{N}$ on a hybrid time domain dom ϕ . A solution satisfies $\phi(0,0) \in \mathcal{C} \cup \mathcal{D}$ and the dynamics of \mathcal{H} . For each *j*, it satisfies the Continuous dynamics; $\dot{\phi}(t,j) = \mathbf{f}(\phi(t,j), u(t,j))$ for almost all $t \in (t_i, t_{i+1})$, and $(\phi(t,j), u(t,j)) \in C$ for all $t \in (t_i, t_{i+1})$. Discrete dynamics; $\phi(t_{j+1}, j+1) = g\left(\phi(t_{j+1}, j), u(t_{j+1}, j)\right)$ and

Problem Statement Applications The Solution Concept Problem 1: (Feasible motion planning problem for hybrid systems) Given a hybrid system \mathcal{H} as in (1) with state $x \in \mathbb{R}^n$ and input $u \in \mathbb{R}^m$, the initial **The Modeling Framework** [3] algorithms include: state set $X_0 \subset \mathbb{R}^n$, the final state set $X_f \subset \mathbb{R}^n$, the unsafe set $X_u \subset \mathbb{R}^n \times \mathbb{R}^m$, A hybrid system \mathcal{H} with state $x \in \mathbb{R}^n$ and **Collision-resilient** Walking robot find a pair (ϕ, u) such that for some $(T, J) \in \text{dom}(\phi, u)$, the following hold: aerial vehicle drones $\succ \phi(0,0) \in X_0;$ $\succ \phi(T,J) \in X_f;$ \succ (ϕ , u) is a solution pair to \mathcal{H} ; final state For any $(t, j) \in dom(\phi, u)$ jump set such that $t + j \leq T + J$, Refuel and tire Multimodal Encapsulates numerous robots' dynamics: flow set change for AV robot $(\phi(t,j),u(t,j)) \notin X_u.$ Problem 1 is formulated as $\mathcal{P} = (X_0, X_f, X_u, (C, f, D, g))$ **Problem 2: (Optimal motion planning problem for hybrid systems)** Given \succ Robots with multi-modal structure; > Purely continuous/discrete-time systems. **Problem 1** and a cost functional c, find a feasible motion plan (ϕ^*, u^*) to Problem 1 such that (ϕ^*, u^*) = arg min $c(\phi)$. Problem 2 is formulated as $\left(\phi(t_{j+1},j),u(t_{j+1},j)\right)\in D.$ $\mathcal{P}^* = (X_0, X_f, X_u, (C, f, D, g), c).$ **Application: Motion Planning for Jumping Insect Robot** Asymptotically Near-Optimal HySST Algorithm [5] In addition to the inputs to HyRRT, HySST requires A jumping insect robot can be modeled as a ball **Simulation Results Probabilistically Complete HyRRT Algorithm [4]** parameters $\delta_{BN} > 0$ and $\delta_{S} > 0$ to tune the optimization of bouncing on a fixed horizontal surface. The surface HyRRT The inputs to HyRRT are X_0 , X_f , X_u , \mathcal{H} , the input library the cost and sparsification of the vertices. is located at the origin and, through control actions, Initial state \mathcal{U}_{C} and \mathcal{U}_{D} , a parameter $p_{n} \in (0, 1)$, which tunes the Final state is capable of affecting the velocity of the ball after Algorithm 3 HySST algorithm probability of proceeding with the flow regime or the jump the impact. **Input:** $X_0, X_f, X_u, c, \mathcal{H} = (C, f, D, g), (\mathcal{U}_C, \mathcal{U}_D), p_n \in (0, 1),$ regime, and an upper bound $K \in \mathbb{N}$ for the number of $K \in \mathbb{N}, X_c, X_d, \delta_{BN}$ and δ_s iterations to execute. 1: \mathcal{T} .init(X_0); 2: $V_{active} \leftarrow V, V_{inactive} \leftarrow \emptyset, S \leftarrow \emptyset;$ Algorithm 1 HyRRT algorithm 3: for all $v_0 \in V$ do **Input:** $X_0, X_f, X_u, \mathcal{H} = (C, f, D, g), (\mathcal{U}_C, \mathcal{U}_D), p_n \in (0, 1), K \in \mathbb{N}_{>0}$ if is_vertex_locally_the_best $(\overline{x}_{v_0}, 0, S, \delta_s)$ then 1: \mathcal{T} .init (X_0) . $(S, V_{active}, V_{inactive}, E) \leftarrow \texttt{prune_dominated_}$ for k = 1 to K do $vertices(v_0, S, V_{active}, V_{inactive}, E)$ randomly select a real number r from [0, 1]. end if HySST $\operatorname{control}$ if $r \leq p_n$ then end for $x_{rand} \leftarrow \texttt{random_state}(\overline{C'}).$ 8: for k = 1 to K do input (u) $extend(\mathcal{T}, x_{rand}, (\mathcal{U}_C, \mathcal{U}_D), \mathcal{H}, X_u, X_c).$ randomly select a real number r from [0, 1]; if $r \leq p_n$ then else 10: $x_{rand} \leftarrow random_state(\overline{C'});$ $x_{rand} \leftarrow \texttt{random_state}(D').$ $\mathtt{extend}(\mathcal{T}, x_{rand}, (\mathcal{U}_C, \mathcal{U}_D), \mathcal{H}, X_u, X_d).$ 12: $v_{cur} \leftarrow \text{best_near_selection}(x_{rand}, V_{active}, \delta_{BN}),$ Hybrid System Model for Jumping Insect Robot X_c The dynamics of the ball while in the air is given by 13: end for $x_{rand} \leftarrow random_state(D');$ 14: 12: return \mathcal{T} $v_{cur} \leftarrow \text{best_near_selection}(x_{rand}, V_{active}, \delta_{BN},$ 15: =: f(x, u)x =Algorithm 2 Extend function X_d ; 16: function EXTEND($(\mathcal{T}, x, (\mathcal{U}_C, \mathcal{U}_D), \mathcal{H}, X_u, X_*)$) end if where $x \coloneqq (x_1, x_2) \in \mathbb{R}^2$ and $u \in \mathbb{R}^1$. The height $(is_a_new_vertex_generated, x_{new}, \psi_{new}, cost_{new})$ $v_{cur} \leftarrow \texttt{nearest_neighbor}(x, \mathcal{T}, \mathcal{H}, X_*);$ of the ball is denoted by x_1 . The velocity of the ball \leftarrow new_state $(v_{cur}, (\mathcal{U}_C, \mathcal{U}_D), \mathcal{H}, X_u)$ $(\texttt{is_a_new_vertex_generated}, x_{new}, \psi_{new}) \leftarrow \texttt{new_state}(v_{cur}, (\mathcal{U}_C, \mathcal{U}_C))$ if is_a_new_vertex_generated & is_vertex_locally 18: \mathcal{U}_D , \mathcal{H}, X_u) is denoted by x_2 . The gravity constant is denoted _the_best($x_{new}, cost_{new}, S, \delta_s$) then if $is_a_new_vertex_generated = true$ then by γ . The flow is allowed when the ball is above the $v_{new} \leftarrow V_{active}.add_vertex(x_{new}, cost_{new});$ $v_{new} \leftarrow \mathcal{T}.\texttt{add_vertex}(x_{new});$ $E.add_edge(v_{cur}, v_{new}, \psi_{new});$ surface. Hence, the flow set is $\mathcal{T}.add_edge(v_{cur}, v_{new}, \psi_{new});$ 21: $(S, V_{active}, V_{inactive}, E) \leftarrow \texttt{prune_dominated_}$ return Advanced; $C := \{ (x, u) \in \mathbb{R}^2 \times \mathbb{R} : x_1 \ge 0 \}$ vertices $(v_{new}, S, V_{active}, V_{inactive}, E);$ end if end if average. At every impact, the velocity of the ball changes return Trapped; 23: end for 10: end function 24: return \mathcal{T} : from pointing down to pointing up while the height remains the same. The dynamics at jumps Theorem 2. (Asymptotic Near-Optimality of HySST) of the actuated bouncing ball system is given as Active vertex Theorem 1. (Probabilistic Completeness of HyRRT) Suppose there exists an optimal motion plan (ϕ^*, u^*) to Witness $x^{+} = |$ |=:g(x,u)Suppose there exists a motion plan (ϕ, u) to $\mathcal{P} =$ $-\lambda x_2 + u$ $\mathcal{P}^* = (X_0, X_f, X_u, (C, f, D, g), c)$. When HySST is used to Final state $(X_0, X_f, X_u, (C, f, D, g))$. When HyRRT is used to solve $\mathcal{P} =$ solve $\mathcal{P} = (X_0, X_f, X_u, (C_{\delta}, f_{\delta}, D_{\delta}, g_{\delta}), c)$, the probability where and u > 0 is the input and $\lambda \in (0, 1)$ is the $(X_0, X_f, X_u, (C_{\delta}, f_{\delta}, D_{\delta}, g_{\delta}))$, the probability that HyRRT that HySST finds a motion plan (ϕ', u') such that $c(\phi') < d$ coefficient of restitution. fails to find a motion plan (ϕ', u') such that ϕ' is close to ϕ $(1 + a\delta)c(\phi^*)$ converges to 1 as the number of iterations The jump is allowed when the ball is on the surface after k iterations is at most ae^{-bk} , where a, b > 0. approaches infinity. with negative velocity. Hence, the jump set is $D := \{ (x, u) \in \mathbb{R}^2 \times \mathbb{R} : x_1 = 0, x_2 \le 0, u \ge 0 \}$ **Selected References**

1] LaValle, Steven M., and James J. Kuffner Jr. "Randomized kinodynamic planning." The international journal of robotics research 20.5 (2001): 378-400. [2] Li, Yanbo, Zakary Littlefield, and Kostas E. Bekris. "Asymptotically optimal sampling-based kinodynamic planning." The International Journal of Robotics Research35.5 (2016): 528-564. [3] Sanfelice, Ricardo G. Hybrid feedback control. Princeton University Press, 2021.

[4] Wang, Nan, and Ricardo G. Sanfelice. "A rapidly-exploring random trees motion planning algorithm for hybrid dynamical systems." 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. [5] Wang, Nan, and Ricardo G. Sanfelice. "HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion Planning Algorithm for Hybrid Dynamical Systems." arXiv preprint arXiv:2305.18649 (2023). [6] J. Zha and M. W. Mueller, "Exploiting collisions for sampling-based multicopter motion planning," in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 7943–7949.

