HyRRT/HySST: Sampling-based Motion Planning Algorithms for Hybrid Dynamical Systems
Nan Wang and Ricardo G. Sanfelice

Overview

Summary

We propose two RRT-type algorithms to address motion planning problems for hybrid dynamical systems, which are characterized by their rapid search capabilities and are accompanied by the above theoretical guarantees:

1. Our RRT[1]-type algorithm to solve feasible motion planning problems for hybrid systems, which we refer to as HyRRT, is guaranteed to be probabilistically complete.
2. Our SST[2]-type algorithm to solve optimal motion planning problems for hybrid systems, which we refer to as HySST, is guaranteed to be asymptotically near-optimal.
3. Both algorithms possess the ability to rapidly search through high-dimensional problems.

Hybrid Systems

The Modeling Framework [3]

A hybrid system \(\mathcal{H} \) with state \(x \in \mathbb{R}^n \) and input \(u \in \mathbb{R}^m \):

\[
\mathcal{H} = \left\{ (x, u) \to \begin{cases} \dot{x}(t) = f(x, u), & (x, u) \in C \setminus D \setminus \mathcal{A} \\ \begin{cases} x(t') = x(t) + v(t'), & C \setminus \mathcal{A} \end{cases} \end{cases} \right\}
\]

- \(f(x, u) \) is the flow map
- \(v(x, t) \) is the jump map
- \(\mathcal{A} \) is the set of actuated jumping times
- \(\mathcal{B} = \mathcal{A} \cup \mathcal{A}^+ \)

Probabilistically Complete HyRRT Algorithm [4]

The inputs to HyRRT are \(X_0, X_f, X_g, \mathcal{M} \), the input library \(U_U \), and \(U_D \), a parameter \(\rho \in (0, 1) \), which tunes the probability of proceeding with the flow regime or the jump regime, and an upper bound \(K \in \mathbb{N} \) for the number of iterations to execute.

Algorithm 1 (HyRRT Algorithm)

1. \(X = X_0 \), \(X_t = \emptyset \), \(C = \emptyset \), \(\mathcal{A} = \emptyset \), \(J = \emptyset \)
2. If \(\rho > 0.5 \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

3. Else

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

4. For each \(x \) in \(X \), do

 \(X_t = X_t \cup \{(x, t') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

5. If \(X_t \neq \emptyset \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

6. If \(X_t \neq \emptyset \)

 \(X = X \setminus \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

7. Return \(J \)

Asymptotically Near-Optimal HySST Algorithm [5]

In addition to the inputs to HyRRT, HySST requires parameters \(\beta > 0 \) and \(\beta > 0 \) to tune the optimization of the cost and specification of the vertices.

Algorithm 2 (HySST Algorithm)

1. \(X = X_0 \)
2. If \(\rho > 0.5 \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

3. Else

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

4. For each \(x \) in \(X \), do

 \(X_t = X_t \cup \{(x, t') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

5. If \(X_t \neq \emptyset \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

6. If \(X_t \neq \emptyset \)

 \(X = X \setminus \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

7. Return \(J \)

Sampling-based Motion Planning Algorithms for Hybrid Dynamical Systems

Probabilistically Complete HyRRT Algorithm [4]

The inputs to HyRRT are \(X_0, X_f, X_g, \mathcal{M} \), the input library \(U_U \), and \(U_D \), a parameter \(\rho \in (0, 1) \), which tunes the probability of proceeding with the flow regime or the jump regime, and an upper bound \(K \in \mathbb{N} \) for the number of iterations to execute.

Algorithm 1 (HyRRT Algorithm)

1. \(X = X_0 \), \(X_t = \emptyset \), \(C = \emptyset \), \(\mathcal{A} = \emptyset \), \(J = \emptyset \)
2. If \(\rho > 0.5 \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

3. Else

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

4. For each \(x \) in \(X \), do

 \(X_t = X_t \cup \{(x, t') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

5. If \(X_t \neq \emptyset \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

6. If \(X_t \neq \emptyset \)

 \(X = X \setminus \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

7. Return \(J \)

Asymptotically Near-Optimal HySST Algorithm [5]

In addition to the inputs to HyRRT, HySST requires parameters \(\beta > 0 \) and \(\beta > 0 \) to tune the optimization of the cost and specification of the vertices.

Algorithm 2 (HySST Algorithm)

1. \(X = X_0 \)
2. If \(\rho > 0.5 \)

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \} \)

3. Else

 \(J = J \cup \{(x, u') \to \{x(t') = x(t) + u'(t'), \forall t' \in (t, t') \} \)